Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1900): 20230048, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38432313

RESUMO

When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.


Assuntos
Arabidopsis , Germinação , Humanos , Adulto , Sementes , Plântula , Arabidopsis/genética , Conhecimento
2.
PLoS Comput Biol ; 19(8): e1011265, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540712

RESUMO

Single-cell approaches are revealing a high degree of heterogeneity, or noise, in gene expression in isogenic bacteria. How gene circuits modulate this noise in gene expression to generate robust output dynamics is unclear. Here we use the Bacillus subtilis alternative sigma factor σB as a model system for understanding the role of noise in generating circuit output dynamics. σB controls the general stress response in B. subtilis and is activated by a range of energy and environmental stresses. Recent single-cell studies have revealed that the circuit can generate two distinct outputs, stochastic pulsing and a single pulse response, but the conditions under which each response is generated are under debate. We implement a stochastic mathematical model of the σB circuit to investigate this and find that the system's core circuit can generate both response types. This is despite one response (stochastic pulsing) being stochastic in nature, and the other (single response pulse) being deterministic. We demonstrate that the main determinant for whichever response is generated is the degree with which the input pathway activates the core circuit, although the noise properties of the input pathway also biases the system towards one or the other type of output. Thus, our work shows how stochastic modelling can reveal the mechanisms behind non-intuitive gene circuit output dynamics.


Assuntos
Proteínas de Bactérias , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Estresse Fisiológico , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica
3.
Plant Physiol ; 190(2): 938-951, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640123

RESUMO

Like many organisms, plants have evolved a genetic network, the circadian clock, to coordinate processes with day/night cycles. In plants, the clock is a pervasive regulator of development and modulates many aspects of physiology. Clock-regulated processes range from the correct timing of growth and cell division to interactions with the root microbiome. Recently developed techniques, such as single-cell time-lapse microscopy and single-cell RNA-seq, are beginning to revolutionize our understanding of this clock regulation, revealing a surprising degree of organ, tissue, and cell-type specificity. In this review, we highlight recent advances in our spatial view of the clock across the plant, both in terms of how it is regulated and how it regulates a diversity of output processes. We outline how understanding these spatially specific functions will help reveal the range of ways that the clock provides a fitness benefit for the plant.


Assuntos
Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Plantas/genética
4.
Mol Syst Biol ; 18(3): e10140, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312157

RESUMO

Individual plant cells possess a genetic network, the circadian clock, that times internal processes to the day-night cycle. Mathematical models of the clock are typically either "whole-plant" that ignore tissue or cell type-specific clock behavior, or "phase-only" that do not include molecular components. To address the complex spatial coordination observed in experiments, here we implemented a clock network model on a template of a seedling. In our model, the sensitivity to light varies across the plant, and cells communicate their timing via local or long-distance sharing of clock components, causing their rhythms to couple. We found that both varied light sensitivity and long-distance coupling could generate period differences between organs, while local coupling was required to generate the spatial waves of clock gene expression observed experimentally. We then examined our model under noisy light-dark cycles and found that local coupling minimized timing errors caused by the noise while allowing each plant region to maintain a different clock phase. Thus, local sensitivity to environmental inputs combined with local coupling enables flexible yet robust circadian timing.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Redes Reguladoras de Genes , Fotoperíodo , Plântula/genética
5.
Methods Mol Biol ; 2398: 47-55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34674166

RESUMO

The A. thaliana circadian clock is an example of a gene network that generates rich temporal and spatial dynamics. Bioluminescent imaging has proven a powerful method to help dissect the genetic mechanisms that generate oscillations of gene expression over the course of the day. However, its use for the study of spatial regulation is often limited by resolution. Here, we describe a modified luciferase imaging method for the study of the Arabidopsis circadian clock across the plant at sub-tissue-level resolution.


Assuntos
Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Luciferases/genética , Luciferases/metabolismo
6.
iScience ; 24(9): 103051, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34568785

RESUMO

Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.

7.
Nat Plants ; 7(8): 996-997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34373606
8.
Mol Syst Biol ; 17(7): e9832, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34286912

RESUMO

Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fator sigma , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Variação Biológica da População , Homeostase , Humanos , Óperon/genética , Fator sigma/genética , Fator sigma/metabolismo
9.
Nat Commun ; 11(1): 5545, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139718

RESUMO

During development, cells gain positional information through the interpretation of dynamic morphogen gradients. A proposed mechanism for interpreting opposing morphogen gradients is mutual inhibition of downstream transcription factors, but isolating the role of this specific motif within a natural network remains a challenge. Here, we engineer a synthetic morphogen-induced mutual inhibition circuit in E. coli populations and show that mutual inhibition alone is sufficient to produce stable domains of gene expression in response to dynamic morphogen gradients, provided the spatial average of the morphogens falls within the region of bistability at the single cell level. When we add sender devices, the resulting patterning circuit produces theoretically predicted self-organised gene expression domains in response to a single gradient. We develop computational models of our synthetic circuits parameterised to timecourse fluorescence data, providing both a theoretical and experimental framework for engineering morphogen-induced spatial patterning in cell populations.


Assuntos
Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Modelos Biológicos , Biologia Sintética , Fatores de Transcrição
10.
Trends Plant Sci ; 25(10): 1041-1051, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467064

RESUMO

Gene expression in individual cells can be surprisingly noisy. In unicellular organisms this noise can be functional; for example, by allowing a subfraction of the population to prepare for environmental stress. The role of gene expression noise in multicellular organisms has, however, remained unclear. In this review, we discuss how new techniques are revealing an unexpected level of variability in gene expression between and within genetically identical plants. We describe recent progress as well as speculate on the function of transcriptional noise as a mechanism for generating functional phenotypic diversity in plants.


Assuntos
Plantas , Estresse Fisiológico , Expressão Gênica , Plantas/genética
11.
Nat Commun ; 11(1): 950, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075967

RESUMO

Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells, but it is unclear whether it has a role in the development of multicellular systems. Here, we show how stochastic pulsing of gene expression enables spatial patterns to form in a model multicellular system, Bacillus subtilis bacterial biofilms. We use quantitative microscopy and time-lapse imaging to observe pulses in the activity of the general stress response sigma factor σB in individual cells during biofilm development. Both σB and sporulation activity increase in a gradient, peaking at the top of the biofilm, even though σB represses sporulation. As predicted by a simple mathematical model, increasing σB expression shifts the peak of sporulation to the middle of the biofilm. Our results demonstrate how stochastic pulsing of gene expression can play a key role in pattern formation during biofilm development.


Assuntos
Bacillus subtilis/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Heterogeneidade Genética , Microscopia de Fluorescência , Modelos Biológicos , Fator sigma/genética , Fator sigma/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/fisiologia , Processos Estocásticos , Estresse Fisiológico , Imagem com Lapso de Tempo
12.
Front Plant Sci ; 11: 599464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384705

RESUMO

Co-expression networks are a powerful tool to understand gene regulation. They have been used to identify new regulation and function of genes involved in plant development and their response to the environment. Up to now, co-expression networks have been inferred using transcriptomes generated on plants experiencing genetic or environmental perturbation, or from expression time series. We propose a new approach by showing that co-expression networks can be constructed in the absence of genetic and environmental perturbation, for plants at the same developmental stage. For this, we used transcriptomes that were generated from genetically identical individual plants that were grown under the same conditions and for the same amount of time. Twelve time points were used to cover the 24-h light/dark cycle. We used variability in gene expression between individual plants of the same time point to infer a co-expression network. We show that this network is biologically relevant and use it to suggest new gene functions and to identify new targets for the transcriptional regulators GI, PIF4, and PRR5. Moreover, we find different co-regulation in this network based on changes in expression between individual plants, compared to the usual approach requiring environmental perturbation. Our work shows that gene co-expression networks can be identified using variability in gene expression between individual plants, without the need for genetic or environmental perturbations. It will allow further exploration of gene regulation in contexts with subtle differences between plants, which could be closer to what individual plants in a population might face in the wild.

13.
PLoS Biol ; 17(8): e3000407, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31415556

RESUMO

Individual plant cells have a genetic circuit, the circadian clock, that times key processes to the day-night cycle. These clocks are aligned to the day-night cycle by multiple environmental signals that vary across the plant. How does the plant integrate clock rhythms, both within and between organs, to ensure coordinated timing? To address this question, we examined the clock at the sub-tissue level across Arabidopsis thaliana seedlings under multiple environmental conditions and genetic backgrounds. Our results show that the clock runs at different speeds (periods) in each organ, which causes the clock to peak at different times across the plant in both constant environmental conditions and light-dark (LD) cycles. Closer examination reveals that spatial waves of clock gene expression propagate both within and between organs. Using a combination of modeling and experiment, we reveal that these spatial waves are the result of the period differences between organs and local coupling, rather than long-distance signaling. With further experiments we show that the endogenous period differences, and thus the spatial waves, can be generated by the organ specificity of inputs into the clock. We demonstrate this by modulating periods using light and metabolic signals, as well as with genetic perturbations. Our results reveal that plant clocks can be set locally by organ-specific inputs but coordinated globally via spatial waves of clock gene expression.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Redes Reguladoras de Genes , Especificidade de Órgãos/genética , Fotoperíodo , Plântula/genética , Plântula/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo
14.
J Theor Biol ; 463: 155-166, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30550861

RESUMO

A major bottleneck in the modelling of biological networks is the parameter explosion problem - the exponential increase in the number of parameters that need to be optimised to data as the size of the model increases. Here, we address this problem in the context of the plant circadian clock by applying the method of distributed delays. We show that using this approach, the system architecture can be simplified efficiently - reducing the number of parameters - whilst still preserving the core mechanistic dynamics of the gene regulatory network. Compared to models with discrete time-delays, which are governed by functional differential equations, the distributed delay models can be converted into sets of equivalent ordinary differential equations, enabling the use of standard methods for numerical integration, and for stability and bifurcation analyses. We demonstrate the efficiency of our modelling approach by applying it to three exemplar mathematical models of the Arabidopsis circadian clock of varying complexity, obtaining significant reductions in complexity in each case. Moreover, we revise one of the most up-to-date Arabidopsis models, updating the regulation of the PRR9 and PRR7 genes by LHY in accordance with recent experimental data. The revised model more accurately reproduces the LHY-induction experiments of core clock genes, compared with the original model. Our work thus shows that the method of distributed delays facilitates the optimisation and reformulation of genetic network models.


Assuntos
Ritmo Circadiano , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Arabidopsis/química , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/fisiologia , Plantas , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
15.
Nat Commun ; 9(1): 5333, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559445

RESUMO

Gene expression can be noisy, as can the growth of single cells. Such cell-to-cell variation has been implicated in survival strategies for bacterial populations. However, it remains unclear how single cells couple gene expression with growth to implement these strategies. Here, we show how noisy expression of a key stress-response regulator, RpoS, allows E. coli to modulate its growth dynamics to survive future adverse environments. We reveal a dynamic positive feedback loop between RpoS and growth rate that produces multi-generation RpoS pulses. We do so experimentally using single-cell, time-lapse microscopy and microfluidics and theoretically with a stochastic model. Next, we demonstrate that E. coli prepares for sudden stress by entering prolonged periods of slow growth mediated by RpoS. This dynamic phenotype is captured by the RpoS-growth feedback model. Our synthesis of noisy gene expression, growth, and survival paves the way for further exploration of functional phenotypic variability.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fator sigma/biossíntese , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Microfluídica , Fator sigma/genética , Imagem com Lapso de Tempo
16.
Proc Natl Acad Sci U S A ; 115(48): E11415-E11424, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30409801

RESUMO

How cells maintain their size has been extensively studied under constant conditions. In the wild, however, cells rarely experience constant environments. Here, we examine how the 24-h circadian clock and environmental cycles modulate cell size control and division timings in the cyanobacterium Synechococcus elongatus using single-cell time-lapse microscopy. Under constant light, wild-type cells follow an apparent sizer-like principle. Closer inspection reveals that the clock generates two subpopulations, with cells born in the subjective day following different division rules from cells born in subjective night. A stochastic model explains how this behavior emerges from the interaction of cell size control with the clock. We demonstrate that the clock continuously modulates the probability of cell division throughout day and night, rather than solely applying an on-off gate to division, as previously proposed. Iterating between modeling and experiments, we go on to identify an effective coupling of the division rate to time of day through the combined effects of the environment and the clock on cell division. Under naturally graded light-dark cycles, this coupling narrows the time window of cell divisions and shifts divisions away from when light levels are low and cell growth is reduced. Our analysis allows us to disentangle, and predict the effects of, the complex interactions between the environment, clock, and cell size control.


Assuntos
Relógios Circadianos , Synechococcus/fisiologia , Divisão Celular , Tamanho Celular , Relógios Circadianos/efeitos da radiação , Ecossistema , Meio Ambiente , Luz , Modelos Biológicos , Synechococcus/citologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/efeitos da radiação
17.
Cell Syst ; 6(2): 216-229.e15, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29454936

RESUMO

In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is typically assumed that competition leads to partitioning of core enzyme molecules among regulators at constant levels. Alternatively, however, different regulatory species could time share, or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus subtilis cells under energy stress. Multiple alternative sigma factors were activated in ∼1-hr pulses in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates among different sigma factors. Mathematical modeling revealed how stochastic time-sharing dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of cell states within a population. Since core molecular components are limiting in many other systems, time sharing may represent a general mode of regulation.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/genética , Fator sigma/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Fator sigma/fisiologia
18.
Proc Natl Acad Sci U S A ; 115(6): 1382-1387, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29363596

RESUMO

The shoot apical meristem (SAM) is responsible for the generation of all the aerial parts of plants. Given its critical role, dynamical changes in SAM activity should play a central role in the adaptation of plant architecture to the environment. Using quantitative microscopy, grafting experiments, and genetic perturbations, we connect the plant environment to the SAM by describing the molecular mechanism by which cytokinins signal the level of nutrient availability to the SAM. We show that a systemic signal of cytokinin precursors mediates the adaptation of SAM size and organogenesis rate to the availability of mineral nutrients by modulating the expression of WUSCHEL, a key regulator of stem cell homeostasis. In time-lapse experiments, we further show that this mechanism allows meristems to adapt to rapid changes in nitrate concentration, and thereby modulate their rate of organ production to the availability of mineral nutrients within a few days. Our work sheds light on the role of the stem cell regulatory network by showing that it not only maintains meristem homeostasis but also allows plants to adapt to rapid changes in the environment.


Assuntos
Arabidopsis/citologia , Citocininas/metabolismo , Meristema/citologia , Nitratos/metabolismo , Brotos de Planta/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Meristema/fisiologia , Células Vegetais/metabolismo , Brotos de Planta/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Solo/química
19.
Elife ; 62017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145865

RESUMO

Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Células Gigantes/fisiologia , Proteínas de Homeodomínio/metabolismo , Células Vegetais/fisiologia , Epiderme Vegetal/citologia , Transcrição Gênica
20.
Science ; 354(6314): 886-889, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27789797

RESUMO

Plants are responsive to temperature, and some species can distinguish differences of 1°C. In Arabidopsis, warmer temperature accelerates flowering and increases elongation growth (thermomorphogenesis). However, the mechanisms of temperature perception are largely unknown. We describe a major thermosensory role for the phytochromes (red light receptors) during the night. Phytochrome null plants display a constitutive warm-temperature response, and consistent with this, we show in this background that the warm-temperature transcriptome becomes derepressed at low temperatures. We found that phytochrome B (phyB) directly associates with the promoters of key target genes in a temperature-dependent manner. The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes to function as thermal timers that integrate temperature information over the course of the night.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Escuridão , Temperatura Alta , Fitocromo B/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fitocromo B/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...